аксиоматизация - definizione. Che cos'è аксиоматизация
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è аксиоматизация - definizione

Формальная теория; Система аксиом; Аксиоматика; Дедуктивная теория; Формальное исчисление; Противоречивость теории; Аксиоматический метод; Формальные системы; Формально-аксиоматическая система; Аксиоматическая система; Дедуктивная система; Аксиоматическая теория; Полнота формальной системы; Логическое исчисление; Противоречивая теория; Аксиоматизация; Формализованная система

АКСИОМАТИЧЕСКИЙ МЕТОД         
способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории.
Формальная система         

неинтерпретированное Исчисление, класс выражений (формул) которого задаётся обычно индуктивно - посредством задания исходных ("элементарных", или "атомарных") формул и правил образования (построения) формул, а подкласс доказуемых формул (теорем) - посредством задания системы аксиом (См. Аксиома) и правил вывода (См. Правило вывода) (преобразования) теорем из аксиом и уже доказанных теорем. Термин "Ф. с." имеет многочисленные синонимы (иногда, впрочем, этими терминами обозначают родственные, но не совпадающие понятия): формальная теория, формальная математика, формализм, формальное исчисление, абстрактное исчисление, синтаксическая система, аксиоматическая система, логистическая система, Формализованный язык, Формальная логика, кодификат, дедуктивная система и др.

Аксиоматический метод         

способ построения научной теории, при котором в её основу кладутся некоторые исходные положения (суждения) - аксиомы (См. Аксиома), или Постулаты, из которых все остальные утверждения этой науки (теоремы (См. Теорема)) должны выводиться чисто логическим путём, посредством доказательств (См. Доказательство). Назначение А. м. состоит в ограничении произвола при принятии научных суждений в качестве истин данной теории. Построение науки на основе А. м. обычно называется дедуктивным. Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений (См. Определение), выражающих (или разъясняющих) их через ранее введённые понятия. В той или иной мере дедуктивные доказательства, характерные для А. м., применяются во многих науках. Но, несмотря на попытки систематического применения А. м. к изложению философии (Б. Спиноза), социологии (Дж. Вико), политической экономии (К. Родбертус-Ягецов), биологии (Дж. Вуджер) и др. наук, главной областью его приложения до сих пор остаются математика и символическая логика, а также некоторые разделы физики (механика, термодинамика, электродинамика и др.).

А. м прошёл в своём историческом развитии 3 стадии. Первая связана с построением геометрии в Древней Греции. Основное сочинение этого периода - "Начала" Евклида (хотя, по-видимому, и до него Пифагор, которому приписывается открытие А. м., а затем Платон и его ученики немало сделали для развития геометрии на основе А. м.). В то время считалось, что в качестве аксиом должны выбираться суждения, истинность которых "самоочевидна", так что истинность теорем считалась гарантированной безупречностью самой логики. Но Евклиду не удалось ограничиться чисто логическими средствами при построении геометрии на основе аксиом. Он охотно прибегал к интуиции в вопросах, касающихся непрерывности, взаимного расположения и равенства геометрических объектов. Впрочем, во времена Евклида такие обращения к интуиции могли и не восприниматься как выход за пределы логики - прежде всего потому, что сама логика не была ещё аксиоматизирована (хотя частичная формализация логики, осуществленная Аристотелем (См. Аристотель) и его последователями, и была некоторым приближением к аксиоматизации). Не было и достаточной отчётливости во введении первоначальных понятий и при определении новых понятий.

Начало второй стадии в истории А. м. связывают обычно с открытием Н. И. Лобачевским (См. Лобачевский), Я. Больяй и К. Ф. Гауссом возможности построить непротиворечивым образом геометрию, исходя из систем аксиом, отличной от евклидовой. Это открытие разрушило убеждение в абсолютной ("очевидной" или "априорной") истинности аксиом и основанных на них научных теорий. Теперь аксиомы стали пониматься просто как исходные положения данной теории, вопрос же об их истинности в том или ином смысле (и выбор в качестве аксиом) выходит за рамки аксиоматической теории как таковой и относится к её взаимоотношению с фактами, лежащими вне её. Появилось много (и притом различных) геометрических, арифметических и алгебраических теорий, которые строились средствами А. м. (работы Р. Дедекинда, Г. Грасмана и др.). Эта стадия развития А. м. завершилась созданием аксиоматических систем арифметики (Дж. Пеано, 1891), геометрии (Д. Гильберт, 1899), исчисления высказываний и предикатов (А. Н. Уайтхед и Б. Рассел, Англия, 1910) и аксиоматической теории множеств (См. Аксиоматическая теория множеств) (Э. Цермело, 1908).

Гильбертовская аксиоматизация геометрии позволила Ф. Клейну и А. Пуанкаре доказать непротиворечивость геометрии Лобачевского относительно евклидовой геометрии посредством указания интерпретации (См. Интерпретация) понятий и предложений неевклидовой геометрии в терминах геометрии Евклида, или, как говорят, построения модели (См. Модель) первой средствами второй. Метод моделей (интерпретаций) стал с тех пор важнейшим методом установления относительной непротиворечивости аксиоматических теорий. В то же время со всей отчётливостью выявилось, что, кроме "естественной" интерпретации (т. е. той, ради уточнения и развития которой данная теория строилась), у аксиоматической теории могут быть и др. интерпретации, причём её можно с равным основанием считать "говорящей" о каждой из них.

Последовательное развитие этой идеи и стремление точно описать логические средства вывода теорем из аксиом привели Гильберта к концепции формального А. м., характерной для третьей, современной его стадии. Основная идея Гильберта - полная формализация языка науки, при которой её суждения рассматриваются просто как последовательности знаков (формулы), не имеющие как таковые никакого смысла (который они приобретают лишь при некоторой конкретной интерпретации). Это относится и к аксиомам - как общелогическим, так и специфическим для данной теории. Для вывода теорем из аксиом (и вообще одних формул из других) формулируются специальные правила вывода (например, т. н. правило modus ponens - "правило зачёркивания", позволяющее получить В из А и "А влечёт В"). Доказательство в такой теории (исчислении (См. Исчисление), или формальной системе (См. Формальная система)) - это просто последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул последовательности по какому-либо правилу вывода (См. Правило вывода). В отличие от таких формальных доказательств, свойства самой формальной системы в целом обсуждаются - а иногда их удаётся и доказать - содержательными средствами т. н. метатеории (См. Метатеория), т. е. теории, рассматривающей данную ("предметную") теорию как предмет изучения. На языке метатеории (метаязыка) формулируются и правила вывода предметной теории. По замыслу Гильберта, в рамках созданной им теории доказательств, т.е. допуская в метатеории только т. н. финитные способы рассуждения (не использующие ссылки ни на какие объекты, не имеющие конечного построения), можно было бы доказать непротиворечивость и полноту всей классической математики (т. е. доказуемость каждой формулы, истинной при некоторой определённой интерпретации). Несмотря на ряд значительных результатов в этом направлении, гильбертовская программа в целом (её обычно называют формализмом) невыполнима, т. к., согласно важнейшему результату К. Гёделя (См. Гёдель)(1931), всякая достаточно богатая непротиворечивая формальная система непременно неполна (т. н. теорема о неполноте). Теорема Гёделя свидетельствует об ограниченности А. м. (хотя определённые расширения допускаемых метатеоретических средств и позволили немецкому математику Г. Генцену, П. С. Новикову и др. математикам получить доказательство непротиворечивости формализованной арифметики).

А. м. подвержен также критике, исходящей из различных семантических (см. Логическая семантика) критериев. Так, интуиционисты (Л. Э. Я. Брауэр, Г. Вейль и др.) не признают обоснованности в применении к бесконечным множествам принципа исключенного третьего (см. Исключённого третьего принцип) между тем этот принцип не только берётся в качестве логической аксиомы в большинстве формальных теорий, но и используется по существу (хотя и неявно) в основных предпосылках гильбертовской программы, согласно которой непротиворечивость теории - достаточное условие её "истинности". Как и интуиционизм, конструктивное направление (См. Конструктивная математика) в математике (в СССР - А. А. Марков и Н. А. Шанин) считает назначением математики изучение не произвольных моделей непротиворечивых формальных систем, а лишь совокупностей объектов, допускающих в определённом смысле эффективное построение.

Ещё более существенные возражения против А. м. выдвигает ультраинтуиционистская критика, ставящая под сомнение единственность натурального ряда чисел и, тем самым, однозначную определённость понятия теоремы формальной системы. Согласно этой критике, А. м. основан на "принципе локальности для доказательств", предполагающем, что если аксиомы истинны и правила вывода сохраняют истинность, то истинными непременно должны быть и теоремы. Т. о., интуитивное обоснование общеупотребительного принципа математической индукции, согласно ультраинтуиционистской критике, содержит неустранимый порочный круг. Ультраинтуиционизм, не ограничиваясь критикой, предлагает и положительную программу преодоления указанных трудностей.

Лит.: Начала Евклида, пер. с греч., [т. 1 - 3], М. - Л., 1948 - 50; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957 (библ.); Новиков П. С., Элементы математической логики, М., 1959: Есенин-Вольпин А. С., Об аксиоматическом методе, "Вопросы философии", 1959, № 7; Садовский В. Н., Аксиоматич. метод построения науч. знания, в кн.: Филос. вопросы совр. формальной логики, М., 1962; Hilbert D., Bernays P., Grundlagen der Mathematik, Bd 1 - 2, В., 1934 - 39.

Ю. А. Гастев, А. С. Есенин-Вольпин.

Wikipedia

Формальная система

Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причём все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.

Формальная система — это совокупность абстрактных объектов, не связанных с внешним миром, в которой представлены правила оперирования множеством символов в строго синтаксической трактовке без учёта смыслового содержания, то есть семантики. Строго описанные формальные системы появились после того, как была поставлена задача Гильберта. Первые ФС появились после выхода книг Рассела и Уайтхеда «Формальные системы»[уточнить]. Этим ФС были предъявлены определенные требования.

Che cos'è АКСИОМАТИЧЕСКИЙ МЕТОД - definizione